

Course Specification

— (Postgraduate Programs)

Course Title: Image Analysis and Media Understanding

Course Code: MSCS 623

Program: Master Programme in Computer Science

Department: Computer Science

College: Computer Science and Information Technology

Institution: King Faisal University

Version: Course Specification Version Number

Last Revision Date: *Pick Revision Date.*

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	4
D. Students Assessment Activities:	5
E. Learning Resources and Facilities:	6
F. Assessment of Course Quality:	7
G. Specification Approval Data:	7

A. General information about the course:

1. Course Identification:

1. Credit hours: 3 (3-0-6)

2. Course type

Α.	□University	⊠ College	□Department	□Track	
В.	🗆 Required		🛛 Elect	ive	
3. Level/year at which this course is offered: : Level 2 , 3 or 4					

4. Course General Description:

This course introduces digital image formation and representation, basic algorithms for image manipulation, image enhancement techniques, edges & corner detections, segmentation, features extraction and matching, image understanding, multiresolution analysis, treatment of color images, template matching techniques, image tracking, stereo imaging and image classifications using Bayessian and neural networks. The course allows students to explore a range of practical techniques by developing their own simple processing functions either in a language such as Java and/or by using library facilities and tools such as MatLab/OpenCV/Python

5. Pre-requirements for this course (if any):

NA

6. Pre-requirements for this course (if any):

NA

7. Course Main Objective(s):

The objective of this course is to provide an introduction to basic and advanced concepts and methodologies for digital image processing, and to develop a strong foundation that can be used as the basis for further study and research in the fields of computer vision and machine learning..

2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom		
2	E-learning		
3	HybridTraditional classroomE-learning	45	100%
4	Distance learning		

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	-
3.	Field	-
4.	Tutorial	-
5.	Others (specify)	-
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods:

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	Know basic concepts of digital image processing	К1	Lectures	- Quizzes - Exams - Assignments
1.2	Understand image process techniques, e.g., sampling, quantization, enhancement	К1	Lectures	- Quizzes - Exams - Assignments
1.3	Know histogram modification, image restoration, features detection and noise reduction	К1	Lectures	- Quizzes - Exams - Assignments
2.0	Skills			
2.1	Expose the current technologies and issues specific to image processing techniques	S1	- Lectures	- Quizzes - Exams - Assignments
2.2	Develop hands-on experience in using computers to process images	S2	- Lectures	- Quizzes - Exams - Assignments

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
2.3	FamiliarizewithImageProcessingToolboxes in Matlab,Python, OpenCV etc	S2	- Lectures	- Quizzes - Exams - Assignments
3.0	Values, autonomy, and	d responsibility		
3.1	Demonstrate team work by applying Image Processing skills in projects using cutting edge techniques, technologies and recent research.	V1	 Lectures Case studies Research assignment 	Project Report and Presentation

C. Course Content:

No	List of Topics	Contact Hours
1.1	Introduction of Digital Image Processing and its Applications. Introduction to Software and Tools (Matlab, OpenCV, Python, R)	3
2. 2	Image Resolution, Quantization and Enhancement in Spatial Domain)	3
3	Image Segmentation (Edge detections, Thrresholding, region Segmentation, etc)	6
4	Image Morphology	3
5	Color Image Processing	3
6	Image Features Extraction (Harris Corner Detector, SIFT, SURF)	6
7	Object detection and Tracking (Background Image subtraction)	3
8	PCA (Multi-Resolution Image Analysis)	3
9	Image Classification using Bayessian and NN	3
10	Stereo Imaging (Panoramic Image Creation)	6
11	Biometrics: Finger print, IRIS and Face Recognitions	6
	Total	45

D. Students Assessment Activities:

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Assignments	Continuous	10%
2.	Quiz	Continuous	10%
3.	Mid Term	8 th - 9 th	20%

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
4	Capstone Project	15 th	20%
5	Final Exam	16 th - 17 th	40%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities:

1. References and Learning Resources:

Required Textbook	 Digital Image Processing by Woods and Gonzales, 3rd Ed, Prentice-Hall, 2008 Digital Image Processing using MATLAB by Woods and Gonzales,Prentice-Hall, 2008 Computer Vision Algorithms and Applications by Richard Szeliski, 2013.
Essential References	 Learning OpenCV: Computer Vision with the OpenCV Library, by Gary Bradski and Adrian Kaehler, O'Reilly, 2008. Digital Image Processing by Rafael C. Gonzalez, Richard E. Woods, Pearson, 4th Edition, 2017, ISBN-10: 0133356728, ISBN-13: 978-0133356724
Supportive References	
Electronic Materials	 IEEE journals, www.opencv.org
Other Learning Materials	 Python Matlab OpenCV

2. Educational and Research Facilities and Equipment Required:

Items	Resources	
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Sufficient seats (typically 20) as per student registration required in the lecture	
Technology equipment (Projector, smart board, software)	Sufficient computer terminals with required setup having the necessary software installed and configured for the students to complete assignments and projects. Data show is needed to demonstrate in the class	
Other equipment (Depending on the nature of the specialty)	Not Required	

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Indirect Assessment through Teaching Evaluation
Effectiveness of students' assessment	Faculty	IndirectassessmentthroughCourseEvaluation Survey
Quality of learning resources	Students	Indirect Assessment through Learning Resources Survey
The extent to which CLOs have been achieved	Faculty	Direct assessment through Rubrics analyses
Othor		

Other

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	
REFERENCE NO.	
DATE	

