





# **Course Specification**

— (Postgraduate Programs )

**Course Title: Machine Learning** 

Course Code: MSCS 624

**Program: Master Programme in Computer Science** 

**Department: Computer Science** 

**College:** Computer Science and Information Technology

Institution: King Faisal University

Version: Course Specification Version Number

**Last Revision Date:** *Pick Revision Date.* 





# **Table of Contents**

| A. General information about the course:                                        | 3 |
|---------------------------------------------------------------------------------|---|
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods: | 4 |
| C. Course Content:                                                              | 4 |
| D. Students Assessment Activities:                                              | 5 |
| E. Learning Resources and Facilities:                                           | 5 |
| F. Assessment of Course Quality:                                                | 6 |
| G. Specification Approval Data:                                                 | 6 |





# A. General information about the course:

#### **1. Course Identification:**

#### 1. Credit hours: 3 (3-0-6)

| zi course type | 2. | Course | type |
|----------------|----|--------|------|
|----------------|----|--------|------|

| Α. | □University | ⊠ College | □Department | □Track |
|----|-------------|-----------|-------------|--------|
| В. | □ Required  |           | 🛛 Elec      | tive   |

3. Level/year at which this course is offered: : Level 2, 3 or 4

#### 4. Course General Description:

Machine learning is a subfield of computer science that evolved from the study of pattern recognition and computational learning theory in artificial intelligence. Machine learning is the science of getting computers to act without being explicitly programmed. Applications of Machine learning can be seen in unmanned vehicles (cars and drones), finger prints, face and speech recognition, effective web search, text analysis, and understanding human genome. In this course, we will discuss about machine learning, data mining, and statistical pattern recognition. Major topics will be Supervised learning (Decision Trees, Bayesian Learning, Neural Networks, Support Vector Machines, Kernels and Unsupervised learning (clustering, dimensionality reduction, deep learning). The algorithms will be tested on real data sets using popular Machine Learning programming languages and tools. Advanced topics related to Big data analytics and machine learning will also be discussed.

#### 5. Pre-requirements for this course (if any):

NA

#### 6. Pre-requirements for this course (if any):

NA

#### 7. Course Main Objective(s):

The objective of this course is to provide the student a strong foundation to understand methods of Machine Learning..

#### 2. Teaching Mode: (mark all that apply)

| No | Mode of Instruction                                    | Contact Hours | Percentage |
|----|--------------------------------------------------------|---------------|------------|
| 1  | Traditional classroom                                  |               |            |
| 2  | E-learning                                             |               |            |
| 3  | <ul><li>Hybrid</li><li>Traditional classroom</li></ul> | 45            | 100%       |





| No | Mode of Instruction | Contact Hours | Percentage |
|----|---------------------|---------------|------------|
|    | • E-learning        |               |            |
| 4  | Distance learning   |               |            |

#### 3. Contact Hours: (based on the academic semester)

| No | Activity          | Contact Hours |
|----|-------------------|---------------|
| 1. | Lectures          | 45            |
| 2. | Laboratory/Studio | -             |
| 3. | Field             | -             |
| 4. | Tutorial          | -             |
| 5. | Others (specify)  | -             |
|    | Total             | 45            |

# B. Course Learning Outcomes (CLOs), Teaching Strategies and

## **Assessment Methods:**

| Code | Course Learning<br>Outcomes                                                          | Code of PLOs aligned<br>with program | Teaching<br>Strategies                                                                        | Assessment<br>Methods                 |
|------|--------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------|
| 1.0  | Knowledge and unders                                                                 | standing                             |                                                                                               |                                       |
| 1.1  | Distinguish and use<br>different techniques<br>of machines learning                  | K1                                   | Lectures                                                                                      | - Quizzes<br>- Exams<br>- Assignments |
| 1.2  | Understand and<br>differentiate between<br>different concepts of<br>machine learning | K1                                   | Lectures                                                                                      | - Quizzes<br>- Exams<br>- Assignments |
| 2.0  | Skills                                                                               |                                      |                                                                                               |                                       |
| 2.1  | Evaluatelearningalgorithmsandcomparewithalternative techniques                       | S1, S2                               | - Lectures                                                                                    | - Quizzes<br>- Exams<br>- Assignments |
| 3.0  | D Values, autonomy, and responsibility                                               |                                      |                                                                                               |                                       |
| 3.1  | Implement machine<br>learning algorithms<br>on simulated and real<br>world problems  | V1                                   | <ul> <li>- Lectures</li> <li>- Case studies</li> <li>-Research</li> <li>assignment</li> </ul> | Project Report<br>and<br>Presentation |





| Codo | Course Learning | Code of PLOs aligned | Teaching   | Assessment |
|------|-----------------|----------------------|------------|------------|
| Code | Outcomes        | with program         | Strategies | Methods    |

# **C.** Course Content:

| No | List of Topics                                                                   | Contact Hours |
|----|----------------------------------------------------------------------------------|---------------|
| 1  | Introduction, Type of Machine Learning, Machine Learning Applications            | 3             |
| 2  | Classification, Regression                                                       | 6             |
| 3  | Neural Networks, Learning rules, Perceptron, Delta rule, Bias                    | 6             |
| 4  | Backpropagation, Generalization, Error Functions, Training modes and overfitting | 6             |
| 5  | Unsupervised Learning, Reinforcement Learning, Correct (PAC) Learning,           | 3             |
| 6  | Introduction to Clustering, Mixture Densities, k-Means Clustering                | 6             |
| 7  | Expectation-Maximization Algorithm, Mixtures of Latent Variable Models,          | 3             |
| 8  | Supervised Learning after Clustering,                                            | 3             |
| 9  | Hierarchical Clustering, Choosing the Number of Clusters.                        | 3             |
| 10 | Deep Learning & Big Data                                                         | 6             |
|    | Total                                                                            | 45            |

# **D. Students Assessment Activities:**

| No | Assessment Activities * | Assessment<br>timing<br>(in week no) | Percentage of Total<br>Assessment Score |
|----|-------------------------|--------------------------------------|-----------------------------------------|
| 1. | Assignments             | Continuous                           | 10%                                     |
| 2. | Quiz                    | Continuous                           | 10%                                     |
| 3. | Mid Term                | 8 <sup>th</sup> - 9 <sup>th</sup>    | 25%                                     |
| 4  | Capstone Project        | 15 <sup>th</sup>                     | 15%                                     |
| 5  | Final Exam              | 16 <sup>th</sup> - 17 <sup>th</sup>  | 40%                                     |

\*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

# **E. Learning Resources and Facilities:**

# **1. References and Learning Resources:**

| Required Textbook     | Introduction to Machine Learning by Ethem Alpaydin, 2nd Edition,<br>MIT press, 2009.                                                                                                                 |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Essential References  | <ol> <li>Bishop, Springer (October 1, 2007), ISBN-10: 0387310738,<br/>ISBN-13:978-0387310732</li> <li>Machine Learning by Top Mitchell, 1st Edition, McGraw Hill,<br/>1997, 0-07-042807-7</li> </ol> |
| Supportive References |                                                                                                                                                                                                      |
| Electronic Materials  | www.anaconda.com                                                                                                                                                                                     |





Other Learning Materials Research Papers in the field of Machine Learning that published in international conferences and journals.

#### 2. Educational and Research Facilities and Equipment Required:

| Items                                                                                        | Resources                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>facilities</b><br>(Classrooms, laboratories, exhibition rooms,<br>simulation rooms, etc.) | Sufficient seats (typically 20) as per student registration required in the lecture                                                                                                                                         |
| <b>Technology equipment</b><br>(Projector, smart board, software)                            | Sufficient computer terminals with required<br>setup having the necessary software installed<br>and configured for the students to complete<br>assignments and projects. Data show is needed<br>to demonstrate in the class |
| <b>Other equipment</b><br>(Depending on the nature of the specialty)                         | Not Required                                                                                                                                                                                                                |

#### F. Assessment of Course Quality:

| Assessment Areas/Issues                        | Assessor | Assessment Methods                                    |
|------------------------------------------------|----------|-------------------------------------------------------|
| Effectiveness of teaching                      | Students | Indirect Assessment<br>through Teaching<br>Evaluation |
| Effectiveness of students'<br>assessment       | Faculty  | IndirectassessmentthroughCourseEvaluation Survey      |
| Quality of learning resources                  | Students | IndirectAssessmentthroughLearningResources Survey     |
| The extent to which CLOs have<br>been achieved | Faculty  | Direct assessment through Rubrics analyses            |
| Other                                          |          |                                                       |

Other

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

# **G. Specification Approval Data:**

| COUNCIL /COMMITTEE |  |
|--------------------|--|
| REFERENCE NO.      |  |
| DATE               |  |

