

Course Specification

— (Postgraduate Programs)

Course Title Computer Vision

Course Code: MSCS 721

Program: Master Programme in Computer Science

Department: Computer Science

College: Computer Science and Information Technology

Institution: King Faisal University

Version: Course Specification Version Number

Last Revision Date: *Pick Revision Date.*

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	4
D. Students Assessment Activities:	6
E. Learning Resources and Facilities:	6
F. Assessment of Course Quality:	7
G. Specification Approval Data:	7

A. General information about the course:

1. Course Identification:

1. Credit hours: 3 (3-0-6)

2. Course type						
Α.	□University	⊠ College	□Depar	rtment	□Track	
В.	🗆 Required			🛛 Elect	ive	
3. Level/year at which this course is offered: : Level 2 , 3 or 4						
5. Level/year at which this course is offered Level 2, 5 of 4						

4. Course General Description:

This course includes basic and advanced topics of computer vision. This course will cover such topics as image formation, basics of image processing, feature extraction and matching, homographies, camera models, image transformations, image warping, multiple view geometry, stereo vision, image mosaics, structure from motion, image based rendering, object recognition and object tracking. Applications may include face recognition, biometrics, surveillance, movies special effects, photorealistic rendering and human computer interaction with computer as robots.

5. Pre-requirements for this course (if any):

NA

6. Pre-requirements for this course (if any):

NA

7. Course Main Objective(s):

This course aims to introduce the advanced topics of Computer Vision to extract semantic and three dimensional information from two-dimension images to automatically understand contents of images

2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom		
2	E-learning		
3	HybridTraditional classroomE-learning	45	100%

No	Mode of Instruction	Contact Hours	Percentage
4	Distance learning		
3. Conta	act Hours: (based on the academic	semester)	
No	Activi	ty	Contact Hours
1.	Lectures		45
2.	Laboratory/Studio		-
3.	Field		-
4.	Tutorial		-
5.	Others (specify)		-
	Total		45

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods:

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and unders	standing		
1.1	Knowthebasicconceptsincomputational vision	К1	Lectures	- Quizzes - Exams - Assignments
1.2	Haveanunderstandingofimage processingforcomputer vision	К1	Lectures	- Quizzes - Exams - Assignments
1.3	Have knowledge of processing of images and determination of various structures	K1	Lectures	- Quizzes - Exams - Assignments
2.0	Skills			
2.1	Apply skills in recognizing three dimensional objects	S1, S2	- Lectures	- Quizzes - Exams - Assignments
3.0	Values, autonomy, and	d responsibility		
3.1	Implement computer vision Techniques on real world problems	V1	 Lectures Case studies Research assignment 	Project Report and Presentation

C. Course Content:

No	List of Topics	Contact Hours
1	Introduction and recent advancements of Computer Vision	3.0
2	Review of Matrices and Linear Algebra	3.0
3	Image formation, Basics of Image Processing.	3.0
4	Introduction to Python and Computer Vision toolbox: OpenCV Library	3.0
5	2D Projective Geometry, Homogeneous coordinate system, Homogrphies	3.0
6	3D Projective Geometry	3.0
7	Estimation – 2D Projective Transformations	3.0
8	Camera Models	3.0
9	Camera Matrix Computation	3.0
10	Epipolar Geometry, Stereo Vision, Image Mosaicing	3.0
11	Tracking and Motion (Corner Detections, Feature extraction and matching)	3.0
12	Camera Calibration and 3D Reconstruction of Scene	3.0
13	Pose Estimation	3.0
14	Transformation techniques, Scaling, Translation, Rotation, Warping, Morphing	3.0
15	Object recognition (Face Detection, Recognition and Machine Learning).	3.0
	Total	45

D. Students Assessment Activities:				
No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score	
1.	Assignments	Continuous	5%	
2.	Quiz	Continuous	10%	
3.	Mid Term	8 th - 9 th	15%	
4	Capstone Project	15 th	30%	
5	Final Exam	16 th - 17 th	40%	

D. Students Assessment Activities:

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities:

1. References and Learning Resources:

Required Textbook	 Multiple View Geometry in Computer Vision by Richard Hartley and Andrew Zisserman, Cambridge University Press, 2nd ed., 2004. Computer Vision: Algorithms and Applications by Richard Szeliski, Springer, 2010. (PDF available online)
Essential References	 Learning OpenCV: Computer Vision with the OpenCV Library, by Gary Bradski and Adrian Kaehler, O'Reilly, 2008. W. B. Thompson, Fleming R, Regehr Stefanucci, Visual Perception from a Computer Graphics Perspective, CRC Press, T&F, 2011, ISBN13 978-1-4665-0275-8. Digital Image Processing by Rafael C. Gonzalez, Richard E. Woods, Pearson, 4th Edition, 2017, ISBN-10: 0133356728, ISBN-13: 978-0133356724.
Supportive References	
Electronic Materials	 IEEE journals, ACM digital library www.opencv.org www.kaggle.com
Other Learning Materials	PythonMatlabOpenCV
2. Educational and Resea	rch Facilities and Equipment Required:

facilities Sufficient seats (typically 20) as per studen
registration required in the lecture

Items	Resources
(Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	
Technology equipment (Projector, smart board, software)	Sufficient computer terminals with required setup having the necessary software installed and configured for the students to complete assignments and projects. Data show is needed to demonstrate in the class
Other equipment (Depending on the nature of the specialty)	Not Required

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Indirect Assessment through Teaching Evaluation
Effectiveness of students' assessment	Faculty	IndirectassessmentthroughCourseEvaluation Survey
Quality of learning resources	Students	IndirectAssessmentthroughLearningResources Survey
The extent to which CLOs have been achieved	Faculty	Direct assessment through Rubrics analyses
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	
REFERENCE NO.	
DATE	

