المجموعة الأولى من تمارين مقرر التحليل الدالي

على \mathbb{R}^2 عرف الدالة . 1

$$d_0(x,y) = \begin{cases} 0 & , x = y \\ 1 & , x \neq y \end{cases}$$

- \mathbb{R} ابين أن d_0 هي دالة مسافة على d_0
- . یکون متراص فی (\mathbb{R},d_0) اِذا وفقط اِذا کان منتهی $K\subset\mathbb{R}$ بین أن $K\subset\mathbb{R}$ بین أن
- به المتتابعة (y_n) متقاربة في (\mathbb{R},d_0) متى تكون المتتابعة $(x_n=rac{1}{n})$ متقاربة في هذا الفضاء؟
 - . ليكن (E,d) فضاء متري. 2
 - [0,1) الحالة الحالة $f(x) = \frac{x}{x+1}$ متصاعدة وهي تقابل من الدالة (a)
 - .E يين أن $d'(x,y) = rac{d(x,y)}{1+d(x,y)}$ دالة مسافة على (b)
 - (E,d') بين أن O يكون مفتوح من (E,d) إذا وفقط إذا كان O مفتوح من (C)
 - (d) في $(\frac{|\ |}{|\ |},\mathbb{R})$, هل كل مغلق ومحدود يكون متراص?

التكن f_n معرفة بالصورة التالية: 3

$$f_n(x) = \begin{cases} 0, -1 \le x \le \frac{-1}{n} \\ \frac{n}{2}x + \frac{1}{2}, \frac{-1}{n} \le x \le \frac{1}{n} \\ 1, \frac{1}{n} \le x \le 1 \end{cases}$$

- $\cdot (C[a,b], \|\ \|_1)$ بين أن المتتابعة $(f_n)_{n\in\mathbb{N}}$ كوشية في الفضاء ((a)
 - $(C[a,b],\|\ \|_1)$ هل المتتابعة تقاريبة في الفضاء (b)
- $(C[a,b],\|\ \|_{\infty})$ هل الفضاء $(C[a,b],\|\ \|_{1})$ تام $(C[a,b],\|\ \|_{1})$
- $(C[a,b], \| \|_{\infty})$ و $(C[a,b], \| \|_{1})$ غير متكافئين (d) بين أن الفضائين بين أن الفضائين
- 4. ليكن الفضاء ℓ^{∞} هو الفضاء الذي عناصره متتابعات $x = (\xi_1, ..., \xi_n,)$ عناصره متتابعات عناصره متتابعات $x = (\xi_1, ..., \xi_n,)$ عناصره متتابعات $x = (\xi_1, ..., \xi_n,)$ عناصره متتابعات $x = (\xi_1, ..., \xi_n,)$
 - l^∞ على على مسافة على $ho(x,y)=\sup_{n\in\mathbb{N}}|\xi_n-\eta_n|$ دالة مسافة على (a)
- اما 1 لتكن $x_{\xi} = (\xi_1, ..., \xi_n,)$ التي على الصورة $x_{\xi} = (\xi_1, ..., \xi_n,)$ المركبات $x_{\xi} = (\xi_1, ..., \xi_n,)$ عندما $x_{\xi} \neq \xi'$ عندما $x_{\xi} \neq \xi'$ عندما وأن $x_{\xi} = (\xi_1, ..., \xi_n,)$ عندما وأن $x_{\xi} \neq \xi'$ عندما وأن $x_{\xi} \neq \xi'$
 - $B(x_{\xi}, \frac{1}{3}) \cap B(x_{\xi'}, \frac{1}{3}) = \emptyset$ نين أنه لکل $\xi \neq \xi'$ فإن (C)
 - (d) استنتج أنه لا توجد مجموعة كثيفة وقابلة للعد في I^∞ اي أن الفضاء غير قابل للفصل.
- $\frac{1}{p} + \frac{1}{q} = 1$ أو ين الفضاء $f_n \to f$ في الفضاء $g_n \to g$ في الفضاء ورسمت ورسمت الفضاء ورسمت ورسم
 - 6. أثبت أن تقاطع أي عدد لجموعات متراصة من فضاء متري يكون متراص.

. هل C[a,b] مغلق في الفضاء (C[a,b] برر إجابتك.